HBSA — DSSB SQL Workshop Fall 16

Lecturers: Jerry Chen and Dhruv Relwani
TA’s: Ricky Pan and Cassie Zhang

Workshop Structure

*We will be going back in forth between slides to demonstrate concepts in Sqlite Studio.
*You are encouraged to follow along on your own computers.

*Topics Covered:

Tables Basic Syntax Aggregate
Functions

Other Useful Relational Joins
Statements Databases

Goals and Objectives

1. Give you hands-on experience with the SQL language
2. Understand practical uses of SQL
3. Enough knowledge to practice on your own

What is SQL

A popular querying language to manipulate data in databases
s “Structured Query Language”

What is SQL

A popular querying language to manipulate data in databases
s “Structured Query Language”

Postgre SQL

What is SQL

A popular querying language to manipulate data in databases

’ MySQL.

PostgreSQL

s “Structured Query Language”

What is SQL

A popular querying language to manipulate data in databases
s “Structured Query Language”

k\/
f _““a
H N

MySQO

Postgre SQL

SQLite

What is SQL

A popular querying language to manipulate data in databases
s “Structured Query Language”

(

';") /1’ \\
- | I L
-7 M

PostgreSQL
k %the

Tables

*These are an “array” of data

*Think Excel spreadsheets A B c o c
1 Ild Name lYear Gender Count
2 1 Mary 1880 F 7065
3 2 Anna 1880 F 2604
4 3 Emma 1880 F 2003
- 4 Elizabeth 1880 F 1939
6 5 Minnie 1880 F 1746

Tables

*These are an “array” of data
*Think Excel spreadsheets

B 7 C

Name lYear
1 Mary 1880
2 Anna 1880
3 Emma 1880
4 Elizabeth 1880
S Minnie 1880
19 Grace 1880
20 Carrie 1880
21 Maude 1880
22 Mabel 1880
23 Bessie 1880
24 Jennie 1880
25 Gertrude 1880

NationalNames

Gender

F

mTmmmm

m MMM MM m MM

D

StateNames

E

Count

7065
2604
2003
1939
1746

@

Basic Syntax

»SELECT
“*FROM
“*WHERE
SLIMIT

**SELECT DISTINCT
+*AS (for shorthand naming purposes)
**SELECT COUNT(*) (to see how many records a table has)

Aggregate Functions

s COUNT()
“*SUM()
“*AVG()

“*What is the average track length? > SELECT AVG(MilliseCOndS)
FROM Track;

Aggregate Functions and the Group By

**COUNT()

*SUM()

< AVG()

**What is the average track length?

“*Say you want the number of tracks in each alboum > SELECT Cou nt(Albumld)
FROM Track
GROUP BY Albumld;

Group by (Visual)

SELECT Count(Albumid)
FROM Track
GROUP BY Albumld;

Group by (Visual)

SELECT Count(Albumid)
FROM Track

GROUP BY Albumid;

Trackld Name Albumld
1 abc 1
2 def 2
3 ghi 1
4 jkl 3
5 mno 1
6 pqr 2
7 3

stu

Trackld Name Albumld
. 1 abc 1
Group by (Visual)
2 def 2
3 ghi 1
SELECT Count(Albumid) 4 jK 3
FROM Track S mno 1
GROUP BY Albumld; 6 par 2
7 stu 3
Trackld Name Albumld Trackld Name Albumld Trackld Name Albumld
1 abc 1 2 def 2 4 jKl 3
3 ghi 1 6 pqr 2 7 stu 3
5 mno 1

Trackld Name Albumld
. 1 abc 1
Group by (Visual)
2 def 2
3 ghi 1
SELECT Count(Albumid) 4 jK 3
FROM Track S mno 1
GROUP BY Albumld; 6 par 2
7 stu 3
Trackld Name Albumld Trackld Name Albumld Trackld Name Albumld
1 abc 1 2 def 2 4 jKl 3
3 ghi 1 6 pqr 2 7 stu 3
5 mno 1

Aggregate Functions and the Group By

**COUNT()

*SUM()

< AVG()

**What is the average track length?

“*Say you want the number of tracks in each alboum > SELECT Cou nt(Albumld)
FROM Track
GROUP BY Albumld;

Aggregate Functions and the Group By

**COUNT()

*SUM()

< AVG()

**What is the average track length?

**Say you want the number of tracks in each album
**Say you want total length of each album =2

SELECT Aloumld, SUM(Milliseconds)
FROM Track
GROUP BY Albumld;

Other useful Statements

**ORDER BY

s»Default is “ascending”

**Having Statement

s*Very similar to WHERE clause but “Having” is written after (and before ORDER BY)
**WHERE = Subset data before running the query, no aggregate functions allowed
**HAVING = Subset data after running query, aggregate functions are allowed

Join statements

|”

*This is what allows us to use “relational” databases

Relational Databases

eDatabases with many tables
*Each table “connects” with another table (usually with an Identifying Key or Id)

Tube

tube_assembly_id

material_id
diameter
weall

length
num_bends
bend_radius
end_a_lx
end_a_2x
end_x_ 1x
end_x_ Zx
end_a (FK)
end_x (FK)
num_kboss
num_bracket
other

end_form_id

forming

Train
® tube_assembly_id (FK)

supplier
quote_date
annual_usage

min_order_gquantity
bracket_pricing

quantity
cost

Tube_End_Form

Type_Component

component_type_id

name

Typ e_ Connection

connection_type_id

name

Type_End_Formm

end_form_id

name

Specs

specl
specd
specs
specqd
spech
spech
spec’
specd
specd
specli

Components

component_id

component_type_id (FK)

name

Comp_[type]

component_id (FK)
component_type_id (FK)

connection_tyvpe_id_1 (FK)
end_form_id_1 (FK)
(65 different attributes)

tube_assembly_id (FK)

Bill_of_Matenals
o tube_assembly_id (FK)

component_id_1 (FK)

quantity_1
component_id_2 (FK)
quantity_ 2
component_id_3 (FK)
quantity_ 3
component_id_4 (FK)
quantity_4
component_id_5
quantity_5
component_id_Bb
quantity_b
component_id_7
quantity_7
component_id_8
quantity_ 8

®

Dim_Date Dim_Store
[g] ™ ¢ 1
¥ Id 20z
Date Store_Number
Day State_Province
Day_of _Week Country
Month Fact_Sales
Month_MName s Date_Id
Quarter Store_lId |
Quarter_Mame Product_Id oo
Vear Units_Sold
=CH -
Dim_Product
% Id
EAN_Code
Product_Name
Brand

Product_Cateqgory

-"Star-schema-example" by SqlPac (talk) - | created this work entirely by m#/self.. Licensed under CC BY-SA 3.0
via Wikipedia - https://en.wikipedia.org/wiki/File:Star-schema-example.png#/media/File:Star-schema-example.png

Dim Date Dim_Store
% Id o)
Date Store_Number
Day State_Province
Day_of_Week SOty
Month Fact_Sales
Month_MName o'e Date_Id
Quarter Store_Id O
Quarter_Name Product_Id O
Year Units_Sold

Dim_Product

Primary Keys 7 1

EAN_Code
Product_Mame
Brand
Product_Category

“Master Key” that points to tables

-"Star-schema-example" by SqlPac (talk) - | created this work entirely by myself.. Licensed under CC BY-SA 3.0
via Wikipedia - https://en.wikipedia.org/wiki/File:Star-schema-example.png#/media/File:Star-schema-example.png

Dim Date Dim_Store
% Id o)
Date Store_Number
Day State_Province
Day_of_Week SOty
Month Fact_Sales
Month_MName o'e Date_Id
Quarter Store_Id O
Quarter_Name Product_Id O
Year Units_Sold

Dim_Product

Primary Keys 7 1

EAN_Code
Product_Mame
Brand
Product_Category

“Master Key” that points to tables

-"Star-schema-example" by SqlPac (talk) - | created this work entirely by myself.. Licensed under CC BY-SA 3.0
via Wikipedia - https://en.wikipedia.org/wiki/File:Star-schema-example.png#/media/File:Star-schema-example.png

i =
2 1 > . (‘E 7 Id

— \SE?e_Numner
Dy State_Province
Day_of_Week Country
Month Fact_Sales
Month_Mame o'e Date_Id
Quarter Store_Id O
Quarter_Name Product_Id Sl
Year Units_Sold

=% I +
Foreign Keys T i ~

Id’s that point back to the original table Product_Name

Brand
Product_Category

-"Star-schema-example" by SqlPac (talk) - | created this work entirely by myself.. Licensed under CC BY-SA 3.0
via Wikipedia - https://en.wikipedia.org/wiki/File:Star-schema-example.png#/media/File:Star-schema-example.png

h i b T
? Artistid «g=col ¥ Trackld Ca=e ¢ MediaTypeld
Name Name Name
AlbumId
MediaTypeld
Genreld —
’is Playlist Composer ? Genreld
? Playlistid ? Playlistid Miliseconds Name
Name ¢ Trackld e Bytes
UnitPrice

7

3
I. Invoiceline

? Invoicelineld

L. Employee Invoiceld

7 Employeeld Trackld
LastName L. Customer UnitPrice
FirstName ¢ Customerld Quantity
Title FirstName §
ReportsTo LastName ;
BirthDate Company 'i' Invoice
HireDate Address # Invoiceld
Address City Q=00 Customerld
City State InvoiceDate
State Country BilingAddress
Country PostalCode BillingCity
PostalCode Phone BilingState
Phone P00 Fax BilingCountry
Fax Email BilingPostalCode
Email SupportRepld Total

Dhruv Relwani
Data Science Society Berkeley
Fall 2016

NULL Values

e Column values are sometimes unknown or
inapplicable

—SQL provides a special value “null”, for such
situations.

—We need a 3-valued logic:
True, False and Null (Unknown).

Joins

SELECT column1, column2, ...

INNER
LEFT OUTER
FROM table1 ooyt oUTER

FULL OUTER

JOIN table2

ON table1.PrimaryKey = table2.ForeignKey;

o 1868 gl A

Our Tables / Relations

Sailors

Boats

sid |sname |rating |age bid |name color
. 101 |Interlake |blue
22 |Dustin / 45.0 102 |Interlake |red
3 1 LUbber 8 5 5 . 5 1 03 Cllpper green
95 |Bob 3 63.5 104 |Marine |red
sid |bid day
22 (101 [10/10/96
05 1103 [11/12/96

Inner Joins

SELECT s.sid, S.sname, I'.bi SELECT S.sid, S.sname, I'.bid
FROM Sailors S, Reserves { } FROM Sailors S INNER JOIN Reserves
WHERE s.sid = r.sid; ON S.sid = I'.sid;
Sailors
sid |sname |rating |age s.sid [s.sname [r.bid
22 | Dustin 7 45.0 22 | Dustin 101
31 Lubber 8 55.5 95 BOb 103
95 |Bob 3 63.5

sid [bid | day
22 101 [10/10/96
95 103 |11/12/96

Left OUTER Joins

 Returns all matched rows from both tables, plus all SELECT s.sid, s.sname, r.bid
unmatched rows from the table on the left of the FROM Sailors s LEFT OUTER JOIN

“‘LEFT OUTER JOIN” clause. Reserves r
— (use Null where columns don’t match) ON s.sid = r.sid;
e Returns al! sid, snam-e for sailors & bid for boats in ssid sname 1rbid
any of their reservations 52 |Dustin 101
— Note: no match for S.sid = r.sid? r.bid IS NULL! 95 |Bob 103
31 |Lubber
Sailors Reserves
sid |sname |rating |age <ic |l day
22 |Dustin | 7 45.0 22 101 [10/10/96
31 |Lubber| 8 155.5 95 103 |11/12/96
95 |Bob 3 63.5

Right OUTER Joins

SELECT r.sid, b.bid, b.bname

e Returns all matched rows, plus all unmatched rows FROM Reserves r RIGHT OUTER JOIN

from the table on the right of the “RIGHT

OUTER JOIN” clause. Boats b
— (use Null where columns don’t match) ON r.bid = b.bid;

. : : : r.sid b.bid b.name
Rheturns all sid fodr sailors, bid & bname for boats 55 70T [Interlake
that are reserved. 102 [Interlake

— Note: no match for I'.bid = b.bid? I.sid IS NULL! 95 103 [Clipper
104 | Marine
Reserves]Z(_)gts 1
: : 1d |name color
sid | bid day 101 |Interlake |blue
22 101 [10/10/96 102 |Interlake |red
95 103 |11/12/96 103 |Clipper |green
104 |Marine |red

Full Outer Joins

SELECT r.sid, b.bid, b.bname

Returns all (matched or unmatched) rows from the EROM Reserves r EULL OUTER JOIN

tables on both sides of the “FULL OUTER JOIN”

clause. Boats b
— (use Null where columns don’t match) ON r.bid = b.bid;

Returns all sid for sailors, bid & bname for boats rsid 55 b.bid o It)ﬁpearlrgie
that are reserved. 102 [Interiake
— Note: no match for I'.bid = b.bid? I'.sid IS NULL 95 103 | Clipper
(OR) b.bid IS NULL & b.bname is NULL 104 |Marine

Boats
Reserves bid |name color
sid |bid day 101 |Interlake |blue
22 1101 [10/10/96 102 |Interlake |red
95 103 |11/12/96 103 | Clipper |green
104 {Marine |red

What next?

Practice practice practice!
You can upload any sqlite database into sqlitestudio and practice your queries.

Where can | find more data?

1. https://www.kaggle.com/datasets
a) Great example: https://www.kaggle.com/kaggle/hillary-clinton-emails

Where can | find more functions?
1. http://www.w3schools.com/sql/

